Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Aspect sentiment triplet extraction based on aspect-aware attention enhancement
Longtao GAO, Nana LI
Journal of Computer Applications    2024, 44 (4): 1049-1057.   DOI: 10.11772/j.issn.1001-9081.2023040411
Abstract62)   HTML9)    PDF (2126KB)(27)       Save

For fine-grained sentiment analysis in Natural Language Processing (NLP), in order to explore the influence of Pre-trained Language Models (PLMs) with structural biases on the end-to-end sentiment triple extraction task, and solve the problem of low fault tolerance rate of aspect semantic feature dependence that is common in previous studies, combining aspect-aware attention mechanism and Graph Convolutional Network (GCN), an Aspect-aware attention Enhanced GCN (AE-GCN) model was proposed for aspect sentiment triple extraction tasks. Firstly, multiple types of relations were introduced for the aspect sentiment triple extraction task. Then, these relations were embedded into the adjacent tensors between words in the sentence by using the double affine attention mechanism. At the same time, the aspect-aware attention mechanism was introduced to obtain the sentence attention scoring matrix, and the aspect-related semantic features were further mined. Next, a sentence was converted into a multi-channel graph through the graph convolutional neural network, to learn a relation-aware node representation by treating words and relation adjacent tensors as edges and nodes, respectively. Finally, an effective word pair representation refinement strategy was used to determine whether word pairs matched, which was used to consider the implicit results of aspect and opinion extraction. Experimental results show that, on ASTE-D1 benchmark dataset, the F1 values of the proposed model on the 14res, 14lap, 15res and 16res sub-datasets are improved by 0.20, 0.21, 1.25 and 0.26 percentage points compared with the Enhanced Multi-Channel Graph Convolutional Network (EMC-GCN) model; on ASTE-D2 benchmark dataset, the F1 values of the proposed model on the 14lap, 15res and 16res sub-datasets are increased by 0.42, 0.31 and 2.01 percentage points compared with the EMC-GCN model. It can be seen that the proposed model has great improvement in precision and effectiveness compared with the EMC-GCN model.

Table and Figures | Reference | Related Articles | Metrics